AN14070

How to Run HSE Demo Application on Cortex-M7 Core of S32G2
Rev. 0 — 5 October 2023 Application note
AN14070

1 Introduction

To help the customers get started with HSE on a S32G2 platform, NXP delivers the HSE_DEMOAPP,
which is available for download from NXP’s official website. This app-note explains in detail the steps to
start the HSE_DEMOAPP_S32G2XX_0_1_0_9 on S32G-PROCEVB-S Board. Besides, the app-note

executing the HSE_DEMOAPP on the S32G2 hardware platform. The pdf is located at <path>
\HSE_DEMOAPP_S32G2XX_0_1_0_9\, where <path> is the local directory in which the demo is stored. So, for
a more detailed description with different setups, it is recommended to refer to the pdf. Moreover, it is important
to note that there are different versions of HSE_DEMOARPP for different S32 devices.

This app-note includes a few terminologies, such as sys_img, pink image and blue image. In addition, each
of these terms are described in the NXP HSE HIGH FW FAQ.pdf. The pdf is located at the following location -
<path>\HSE_DEMOAPP_S32G2XX_0_1_0_9\demo_app\docs\.

Overview of steps involved.

Install the HSE_DEMOAPP_S32G2XX_0_1_0_9 on Windows PC.

Import the HSE demo project from HSE_DEMOAPP_S32G2XX _0_1_0_9 and generate an .elf.
Using S32DS IDE v3.5, create a new Application bootloader binary for M7 core of S32G2.
Generate a secure-boot blob image for M7 core by inserting a HSE pink image to the /VT.
Write the generated blob image to the target device’s QSPI flash using S32 Flash Tool.

Load the generated HSE demo .elf to the SRAM using Trace32 Debugger Tool. .

Check the version and status of HSE FW.

Perform encryption and decryption. .

Verify the encrypted and decrypted results using an online AES Conversion Tool.

©® NSOk WN=

The following table shows the Acronyms used through out the document.

Table 1. Acronyms and definition

Acronyms Definition

PC Personal Computer

POR Power On Reset

ROM Read Only Memory

HSE Hardware Security Engine

IVT Interrupt Vector Table

IDE Integrated Development Environment
FW Firmware

AES Advanced Encryption Standard
SRAM System Random Access Memory

h o
2

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

2 Installation

The following steps shows how to install the HSE_ DEMOAPP_S32G2XX_0_1_0_9 on Windows PC

1. The HSE FW 0.1.0.9 SR Release for S32G2 can be downloaded from NXP.com. In case, the download is
not permitted, please reach out to the NXP sales representative. After logging in, depending on the access
right granted to the account, the user can find the packages listed under standard software offering, as
shown in the following figure.

HSE FW 0.1.0.9 SR Release for $32G2

Files License Keys Notes Download Help

Show All Filesa 6 Files
File Description + FileSize ¥ FileName =
HSE_DEMOAPP_S32G2XX_0_1_0_9 exe 14MB # HSE_DEMOAPP_S32G2XX_0_1_0_9.exe
HSE_FW_S32G2XX_0.1.0.9_SCR txt 1KB & HSE_FW_S32G2XX_0.1.0.9_SCR.txt
HSE_FW_S32G2XX_0_1_0_9.exe 19MB & HSE_FW_S32G2XX_0_1_0_9.exe
HSE_FW_S32G2XX_0_1_0_9_Quality_Package.zip 227 KB HSE_FW_S32G2XX_0_1_0_9_Quality_Package zip
HSE_FW _832G2_0.1.0.9_ReleaseNotes pdf 2475KB HSE_FW _832G2_0.1.0.9_ReleaseNotes_pdf
832G2XX_HSE_Security_Installer_0.1.0.9_SCR txt 361 bytes §32G2XX_HSE_Security_Installer_01.0.9 SCR txt

Figure 1. HSE demo download

2. From the HSE FW package, download the following files, the remaining ones are optional.
e HSE DEMOAPP_S32G2XX_x.x.x.x.exe
e HSE FW _S32G2XX x.x.x.x.exe

3. After downloading them, consequently run HSE_ DEMOAPP_S32G2XX_x.x.x.x.exe and
HSE FW _S32G2XX x.x.x.x.exe and follow the instructions from the installation wizard.

> OSDisk (C) » NXP

Name Anderungsdatum Typ
HSE_DEMOAPP S532G2XX 0.1 0.9 25.05.2023 15:20 Dateiordner
HSE_FW S32G2XX 0.1 09 24.05.2023 10:14 Dateiordner

Figure 2. HSE demo installation two
4. After the installation is complete, navigate to the <path> to which the folder named
HSE_DEMOAPP_S32G2XX_x.x.x.x is located — refer to above figure and open HSE_DEMOAPP_S32G2

3 » OSDisk (C) » NXP » HSE DEMOAPP_S32G2XX 0109

~

Name ¥ Anderungsdatum Typ Grobe
demo_app 25.05.2023 15:20 Dateiordner
hse_releases 25.05.2023 15:20 Dateiordner
. HSE_DEMOAPP_S32G2XX_0_1_0_9 ReadMe.pdf 11.04.2023 11:31 Foxit PDF Reader Do... 9.061 KB
license.rtf 11.04.2023 11:33 Rich-Text-Format 526 KB
ﬁ uninst.exe 25.05.2023 15:20 Anwendung 80 KB

Figure 3. Read me pdf location

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 2/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

5. Although, the HSE demo app supports multiple NXP platforms, the focus of this app-note is on S32G2.
However, with some fine-tuning, the same steps can be mirrored on other listed target devices.
6. Furthermore, the HSE_DEMOAPP_S32G2XX_0_1_0_9 ReadMe.pdf does a deep-dive into the
HSE_DEMOAPP_S32G2XX_0_1_0_9 package. The important highlights from the pdf are given below,
* The section 5 and 6 detail the successful running of HSE FW using different resources.
* The section 7 discusses ways to verify the status of the HSE FW, configure the relevant
keys and services, perform different types of encryption and decryption on the target device.
322010932201093221 4.
7. Next, copy the subdirectories hse and interface from <path>\HSE_FW_S32G2XX_0_1_0_9 to <path>\HSE_
DEMOAPP_S32G2XX_0_1_0_9\hse_releases\S32G2XX, as shown in the following figure.

» OSDisk (C) » NXP » HSE_DEMOAPP_S32G2XX 0109 » hse releases » S32G2XX

s

Name Anderungsdatum Typ
hse 25.05.2023 15:22 Dateiordner
interface 25.05.2023 15:22 Dateiordner
|| keep 11.04.2023 11:31 KEEP-Datei

Figure 4. Copying directories

3 Load the HSE demo .elf to the SRAM

Import the HSE demo project from HSE_DEMOAPP_S32G2XX_0_1_0_9 and generate an .elf. The following
steps shows how to import:

1. Once the installation of HSE_ DEMOAPP_S32G2XX 0 _1_0_9 is complete, open the S32DS v3.5 and
navigate to File -> Open projects from File Systems and Archives. Next, from the dialogue box, click on
Directory and navigate to HSE_ DEMOQO_S32G2XX, as shown in the following figure.

Import Projects from File System or Archive

This wizard analyzes the content of your folder or archive file to find projects and import them in the IDE.

Import source: v

Directory...
type filter text <
Folder $32

Browse for Folder

« v 1 « demo_app » projects » 532DS v D
[newly Organisieren Neuer Ordner
Use installed pr Name Anderungsdatum
[v] Search for n # Schnellzugriff
[v] Detect and g HSE_DEMO_S32G2XX 25.05.2023 15:29

@ OneDrive - NXP HSE_DEMO_S32G3XX 25.05.2023 15:20

& NXL27948 HSE_DEMO _S32R41X - 5.9 15:20
HSE_DEMOQ_S32R45X 25,05.2023 15:20
HSE_DEMO_S32ZE

HSE_DEMO_SAF85XX

utils

Working sets

roje:
[]Add proj
B 3D-Objekte

= Bilder
I Desktop

£ Dokumente

Figure 5. HSE demo project
2. The imported project will then appears in the Project Explorer window on the left-hand side.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 3/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

workspaceS32DS.3.5 - HSE_DEMO_S32G2XX/src/services/src/main.c - $S32 Design Studio 1
File Edit Source Refactor Navigate Search Project ConfigTools Run Window Help

o | ® ~] >~ BT Bien| &l v @gva~[dv@&vig

23 Dashboard & ¢ 7 B @Elinker ramld Emainc ¥ [hse ge

@ — /*=========================
B&E Y § =0 *

21 Project Explorer &

= HSE_DEMO_S32G2XX: BuildConfig_Flash

#if defined(APP_HSE_FW_INST

int main(void)

¢ HSE_MU_SendEvent (HSE_HC
while(! CHECK _HSE_STATL

Init_Peripherals();

Figure 6. HSE demo project two

3. After the project is imported, go to the Project Explorer window and navigate to HSE_ DEMO_S32G2XX/
src/services/src/main.c. Though, the main.c file includes several functions that service HSE, for this specific
use-case, the user may choose to simplify the code, as shown in the following figure.

int main(void)

{

HSE_MU_SendEvent (HSE_HOST_PERIPH_CONFIG_DONE);

while(! CHECK_HSE_STATUS(HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK));
Init_Peripherals();

HSE_GetVersion_Example();

HSE_Status();

HSE_Config();

HSE_Crypto();

while(1);
}
Figure 7. Code snippet from HSE demo project

4. Additionally, as this app-note focusses only on HSE_Aes_Example(), the user may choose either to
comment out or to remove the rest of the functions from HSE_Crypto(), as shown in the following figure.

void HSE_Crypto(void)
ASSERT (CHECK_HSE_STATUS (HSE_STATUS_INSTALL_OK));

HSE_Aes_Example();
}

Figure 8. Code snippet from HSE demo project two

5. Itis important to note that if the above modifications are made to the original code, due to dependencies,
the srvResponse will not return HSE_SRV_RSP_OK and therefore, the error handling will fail. Hence, it is
necessary either to comment out or to remove the error handling, as shown in the following figures.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 4/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

fHommmm e AES ECB Encrypt Request --------- */
memset (testOutput_encrypt, @, BUFF_LEN);

/* Send the request */
srvResponse = HSE_AesEncrypt(HSE_CIPHER_BLOCK_MODE_ECB, aesEcbKeyHandle,
NULL, aesEcbPlaintext, aesEcbPlaintextLength, testOutput_encrypt);

/* Check response and output */
/*if((HSE_SRV_RSP_OK != srvResponse) ||
(e != memcmp(testOutput, aesEcbCiphertext, aesEcbCiphertextLength)))

{

goto exit;

JfHemmmmemmn AES ECB Decrypt Request --------- */

memset (testOutput_decrypt, @, BUFF_LEN);

/* Send the request */
srvResponse = HSE_AesDecrypt(HSE_CIPHER_BLOCK_MODE_ECB, aesEcbKeyHandle,

NULL, aesEcbCiphertext, aesEcbCiphertextlLength, testOutput_decrypt);

/* Check response and output */
/*if((HSE_SRV_RSP_OK != srvResponse) ||

(& != memcmp(testOutput, aesEcbPlaintext, aesEcbPlaintextLength)))
{

}.«fa

goto exit;

Figure 9. Code snippet from HSE demo project three
The next step is to build the project. To do so, right-click on the project in the Project Explorer window
and select Build Project. The Build action will Compile the project, Link the libraries and finally generate
an .elf. The generated HSE_DEMO_S32G2XX.elf, as shown in the following figure and to be henceforth
called HSE demo.elf, is located in the folder <path>\NXP\HSE _DEMOAPP_S32G2XX 0_1_0 9\demo_app
\projects\S32DS\HSE_DEMO_S32G2XX\BuildConfig_Flash.

Name Anderungsdatum
board 25.05.2023 15:30
generate 25.05.2023 15:29
Project_Settings 25.05.2023 15:29
RTD 25.05.2023 15:29
src 25.05.2023 15:29
D HSE_DEMO_S32G2XX.args 22.06.2023 16:48
[] HSE DEMO_S32G2XX bin 22.06.2023 16:49
| | HSE DEMO_S32G2XX.elf 22.06.2023 16:49
[] HSE_DEMO_S32G2XX.map 22.06.2023 16:49
L] makefile 22.06.2023 16:48
[objects.mk 22.06.2023 16:16
[] sources.mk 22.06.2023 16:48
Figure 10. Generated .elf
AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023

AN14070 5/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

4 New application bootloader creation

Use of S32DS IDE v3.5, to create a new Application bootloader binary for Cortex-M7 core of S32G2. The
following steps shows how to create:

1. To create a new application bootloader .bin, first go to File -> New -> S32DS Application Project. Then,
provided the relevant S32GX packages were installed, a list of processor will be displayed in the dialogue
box. In case they were not, refer to the S32DS IDE v3.5 Installation Guide. Further, assuming that
S32G274A is the target device, select the S32G274A _Rev2 Cortex-M7 processor from the list, as shown in
the following figure.

Processors: ToolChain Selection:

| type filter text Core Kind Name Toolchain

v & Family S32G2 M7 Cortex-M... NXP GCC 9.2 for Arm 32-bit Bare-Metal v
B S32G2 Cortex-A53 Linux M7 Cortex-M... NXP GCC 9.2 for Arm 32-bit Bare-Metal v
B S32G233A Cortex-A53 (decoupled mo | M7 Cortex-M... NXP GCC 9.2 for Arm 32-bit Bare-Metal v
B S32G233A Cortex-A53 (lockstep modg
B S32G233A Cortex-M7
i S32G234M Cortex-M7
i 532G254A Cortex-A53 (decoupled mo -
§ S32G254A Cortex-A53 (lockstep mode esCPtion:
B S32G254A Cortex-M7 GNU 9.2 Toolchain is selected
B 532G274A_Rev2 Cortex-A53 (decouple
B S32G274A_Rev2 Cortex-A53 (lockstep
i S32G274A_Rev2 Cortex-M7

& Family S32G3
< >

Figure 11. Creating an application project

2. Although S32G274A has three M7 cores in lockstep, only one lockstep core is sufficient to perform the
secure boot operation. Hence, for the purpose of this app-note, only Cortex-M7_0 core is advised to be
enabled — refer to the following figure.

Project Name test demo M7 0 test demo M7 1 tes’_t:(j emo M7 2
Core Cortex-M7_0 [| Cortex-M7_1 []Cortex-M7 2
Library Newlib v |Newlib Newlib

I/0 Support No I/0 ~ [No 1/0 No I/0

FPU Support Toolchain Default v | Toolchain Default Toolchain Default
Language C ~C C

SDKs

Debugger 532 Debugger v

Figure 12. Core selection

3. Once these changes are incorporated, the user can customise the application bootloader code and
subsequently, generate a .bin file. But, note that generating a .bin file is tricky. Unlike the .elf file, which is
automatically generated post successful build, the generation of .bin file needs to be manually enabled. To
enabile it, first, right-click on the <project> -> Properties. Then, from the dialogue box click on C/C++ Build
-> Settings -> Tool Settings -> Create flash image. Lastly, click on Apply and Close - refer to the following
figure.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 6/23

NXP Semiconductors

AN14070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

Resource
Builders

¥ Tool Settings # Build Steps

v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Edi

C/C++ General
Project Natures
Project Reference:
Run/Debug Settir
532 Configuration
SDKs

Task Tags
Validation

(2 Cross Settings
(2 Target Processor

v ® Standard S32DS C Compiler

(2 Dialect

(% Preprocessor
2 Includes

(2 Optimization
2 Debugging
2 Warnings

(2 Miscellaneous

v ® Standard S32DS C Linker

& General

& Libraries

& Miscellaneous

(% Shared Library Settings
@ Link Order

Figure 13. Enabling flash image creation

Build Artifact Binary Parsers @ Error Parsers

Prefix ‘ arm-none-eabi-

Path ‘ ${S32DS_G3_ARM32_GNU 9. 2_
Suffix ‘

C compiler ‘ gce

Hex/Bin converter ‘ objcopy

Listing generator ‘ objdump

Size command ‘ size

Build command ‘ make

Remove command ‘ rm -rf

Create flash image e"'
[_] Create extended listing
Print size

4. The flash binary is, however, not yet created, because the final step is still pending. To create the flash
binary, reopen the dialogue box, as shown in the following figure. Follow the same sequence until Too/
Settings. And in the Tool Settings tab, expand the option Standard S32DS Create Flash Image and click on
General. From the drop-down menu of Output file format, select Raw Binary and click Apply and Close.

Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Edi
C/C++ General
Project Natures
Project Reference:
Run/Debug Settir
S32 Configuratiol
SDKs
Task Tags
Validation

Figure 14. Flash binary creation

® Tool Settings # Build Steps

Build Artifact Binary Parsers @ Error Parsers

(# Cross Settings
(2 Target Processor

v & Standard 532DS C Compiler
2 Dialect
% Preprocessor
2 Includes
2 Optimization
£ Debugging
Warnings
2 Miscellaneous

v & Standard 532DS C Linker
2 General
(& Libraries
Miscellaneous
Shared Library Settings
% Link Order

v & Standard $32DS Assembler
£ General
2 Preprocessor
% Debugging

% General
v & Standard S32DS Print Size

v & Standard S32DS Create Flash Image (=

Qutput file format (-O) Raw binary
|:| Section: -j .text ?
[] Section: -j .data

Other sections ()

5. Then, rebuild the project as described in Section 3. The generated <project name>.bin file will be located in
the folder <project path>\Debug RAM\, as shown in the following figure.

AN14070

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

Application note

Rev. 0 — 5 October 2023

AN14070

7123

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

v % debug_demo_M7_0: Debug RAM

3 Binaries

& Includes

2 Project_Settings

2 include

£ src

v = Debug_RAM

= Project_Settings
& src
¥ debug_demo_M7_0.elf - [arm/le]
=l debug_demo_M7_0.args
= debug_demo_M7_0.bin
=l debug_demo_M7_0.map
makefile
objacts.mk
® sources.mk

Figure 15. Application code binary image

5 Secure-boot blob image generation

Generate a secure-boot blob image for Cortex-M7 core by inserting a HSE pink image to the /VT. The following
steps shows how to insert the image:

1. A blob image is a form of .bin file that, using a flash tool, is written to the storage device, such as a Flash,
an eMMC or a SD card; in this case, the S32 Flash Tool is used to write the blob image to the QSP/ Flash.
Moreover, a blob image for S32G2 contains following components in the same sequence: a self-test DCD,
self-test DCD (backup), DCD, DCD (backup), HSE, HSE (backup), application bootloader and application
bootloader (backup). However, depending on the use case, one or more of the listed component could
be left-out. Further, there is another critical part of the blob image called /VT that holds the pointers to the
binaries of each of the enabled components. In addition to this, the secure-boot blob image includes a HSE
pink image.

2. For creating a secure boot blob image for M7 core, the users can use the project created in step 3; note that
it is not related to the HSE demo package, which was imported in step 2. So, once the required binaries are
available, run S32DS IDE v3.5, then open the project that was either created in step 3. Next, switch the view
from C/C++ to IVT, refer to the following figure.

Q F|[Eikw ¢ e = =@
2= s T B 2 0utline ® @ Build Targe‘[iz i

~ SRR
U global_variables.h
x47, ex U hse hosth
x3a, ex U hse_host_aead.h
Ixca, Ox
IX69, Ox 4 hse_host_cipher.h
Ixbe, ex 4 hse host_hash.h
Ixce, Bx Y hse host kdf.h
Ix8a, @x 4 hse_host km_gen_key.h
IX78, Ox i
4 hse_host_km_import_key.h
4 hse_host_km_utils.h
4 hse_host_mach
Figure 16. Switching to IVT view
AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023

AN14070 8/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

3. The IVTView, shown in the following figure, displays the blocks DCD, HSE, Application bootloader, Boot
configuration and Automatic Align that are relevant for the generation of the blob image.

= IVTView =

Boot Configuration ® On [X]

DCD
7 =
Boot Target | M7.0 A = (BT
BOOTSEQ: Secured boot mode Start address | 0x110 | Sizeinbytes | 4
Boot Target Watchdog
GMAC Generation Reserved
DCD (backup)
Key Type | Plain ADKP ~ [X] B
/| Use new authenticated image format (only for 3262 Rev2.1 and above)
Key File| N/A []
Life Cycle ® On)
HSE
Life Cycle
N/A s B

Interface selection Start address | 0x120 | sizeinbytes | 4

Boot device type | QuadsSPl Serial Flash = [x]
» HSE FW Configuration
V| Configure QuadSPl parameters
Reserved

QuadSPl parameters | N/A N B

HSE (backup)
IVT Image Address

IVT Image Start Address 0x0 o) ‘

Automatic Align

®on [x]
Automatic Align Start Address: | 0x0 I Align I

N/A N (BT
Import VT Image Start address | 0x130 | Sizeinbytes | 4

Export IVT Image

Figure 17. IVT configuration

4. The DCD .bin contains the data that will be used to configure S32G2 after it comes out of reset. Moreover,
the DCD is generally created using DCD Tool, but, in this case, the DCD .bin files are included in the demo
project folder and can be directly loaded from <path>NXP\HSE _DEMOAPP_S32G2XX 0 _1_0_9\demo_
app\images\S32G2XX. So, from the four available binaries seen in the following figure, for general use-case
load dcd_init_sram.bin.

Name Anderungsdatum
| | dcd_init_sram.bin 11.04.2023 11:31
| | dcd_set_gpio25_and_init_sram.bin 11.04.2023 11:31

|| gspi_macronix_ddr_octal_dll_bypass_133Mhz.bin 11.04.2023 11:31
|| gspi_macronix_ddr_octal_dll_bypass_200Mhz.bin ~ 11.04.2023 11:31

Figure 18. DCD binary image

5. Likewise, the HSE pink image is also delivered with the HSE demo project and is located in the folder
<path>\NXP\HSE_DEMOAPP_S32G2XX _0_1_0 9\hse_releases\S32G2XX\hse\bin. However, before
uploading the image, remember to modify its name from <image name>.bin.pink to <image name>.bin, as
shown in the following figure.

Name Anderungsdatum

| | rev2.0_s32g2xx_hse_fw_0.1.0_1.0.9_pb230405.bin 11.04.2023 13:35

| rev2.0_s32g2xx_hse_fw_0.1.0_1.0.9_pb230405.bin.pink 11.04.2023 13:35

|| rev2.1_s32g2xx_hse_fw_0.1.0_1.0.9_pb230405.bin.pink 11.04.2023 13:35
Figure 19. HSE FW pink image

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 9/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

6. Moreover, as the sys-img is not yet available, disable the sys-img pointers in the HSE FW Configuration
window, as visible in the following figure.

¥ HSE FW Configuration

HSE FW Configuration

Reserved

Reserved

Figure 20. HSE FW configuration in IVT

7. Next, the Application bootloader image that was created in the step 3, is the third .bin that has to be linked
to the IVT. Additionally, in the Application Boot Image block from the following figure, two addresses namely,
RAM start pointer and RAM entry pointer must be populated in their respective fields.

¥ Application Boot Code Image

¥ Application Boot Image

RAM start pointer

Address

RAM entry pointer

Address

Code length

Figure 21. Application boot code image configuration

8. Both the parameters can be found in the project’s linker file with ./d extension. For S32G2XX target device,
usually, the file name is S32G_M7_RAM.Id, as shown in the following figure.

v & debug_demo_M7_0: Debug RAM
Binaries
! Includes
¥ (2 Project_Settings
= Startup_Code
& Debugger
~ 2 Linker _Files
Bd S32G_M7_RAM.Id
2 include

Figure 22. Application code linker file

9. To find the pointer addresses, scroll down S32G_M7_RAM.Id to the Memory section. Since, in this case, the
0" M core is in use, the RAM start pointer is 0x34001000, as shown in the following figure. Further, unless

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 10/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

an explicit mismatch is found in the .bss section of the linker file, the RAM entry pointer is the same as RAM
start pointeri.e. 0x34001000.

/* Linker script to configure memory regions. */
MEMORY

{
CM7 @ RAM (rw) : ORIGIN = ©x34e01eee,| LENGTH = exeFFeee
CM7_1_RAM (rw) : ORIGIN = ©x34leeeee, LENGTH = Bxleeeee
CM7_2_RAM (rw) : ORIGIN = ©x34200000, LENGTH = ©x1eeeee
}

Figure 23. Linker code snippet

10. Next, in the left-most panel of the IV TView, verify whether the Boot Target matches the core - here M7_0.
In addition, before exporting the final secured boot blob image, make sure that none of the IVT fields

are marked in red, as shown in the following figure. If they are, it indicates that an address overlap has

occurred.

® On [x]

licati - 0x1067

Application bootlaader 0x130 ::;’r'n“:"t":mad” 3896 bytes _—
‘ C\Users\nefa2049\workspaceS3205 3.5\ debug_demo'debug_deme_M7_0\Debug ‘ @ Bl|lC
Start address | 0x130 T Sizein bytes | 3896
‘Application bootloader (backup) - 4 bytes

v Application Baot Code Image 0x138 Segment overlaps. 0130

Figure 24. IVT automatic size alignment

11. The solution is to either recalculate the memory usage and manually add buffers between the conflicting
memory segments or use the Automatic Align feature, as visible in the following figure, and simply click on
Align button.

Automatic Align

Automatic Align Start Address: | Ox0 Align ‘I

Figure 25. IVT automatic size alignment two
12. The last step is to export the blob image; please refer the following figure.

Automatic Align Start Address: | 0x0

Import IVT Image

Export VT Image

Export Blob Image
ash Image

Figure 26. Export final blob image

6 Writing the blob image to the QSPI flash

Use the S32 Flash Tool to write in the generated blob image to the target device’s QSPI flash. The following
steps shows how to write in the blob:

1. The blob image generated in step 4 needs to be delivered to the target device’s QSPI Flash memory.
Although, there are a few means to perform this task, this app-note discusses doing it serially using S32
Flash Tool and Trace32 Debugger. Moreover, the target device is S32G-PROCEVB-S Board and, with

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 11723

NXP Semiconductors

AN14070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

corresponding modifications, can be replicated on other devices. Further, the S32 Flash Tool can be
downloaded from NXP.com, provided the necessary access rights already exist. If not, reach out to the
designated sales representative from NXP; note that the Trace32 Debugger is, however, a proprietary of

Lauterbach and must therefore be purchased accordingly.

2. Next, once the S32G-PROCEVB-S has entered serial boot mode and all the necessary prerequisites are
fulfilled - refer sections 2 to 4 of AN12422 for detailed description, load the generated blob image, from step
4, serially to the S32G-PROCEVB-S Board. To do so, first find the COM port to which the target device is
serially connected. To locate the COM port on Windows OS, open the device manager, go to Connections

(COM & LPT) and look for USB Serial Port, as shown in the following figure.

& Akkus

W Anschliisse (COM & LPT)
i nt Technology - SOL (COM3)

¥ USB Serial Port (COM4)
iy Audio, Video und Gamecontroller
i Audioeingénge und -ausgénge

Figure 27. Configuring serial communication port

3. Next, open the S32 Flash Tool, enter the COM port, perform Test connection check, set the device Target
and choose the flash hardware Algorithm, as described in the following figure. Furthermore, the Upload
target and algorithm to hardware. option uploads the algorithm linked to the target and QSPI flash device.

$32 Flash Tool
File Help

Simple View

Initialization Communication

Select target and algorithm for uploading:

|Target S32G2x00¢ v | 3. [] override X0OSC frequency 40M 1.
[Secure serial bootloader: Browse... Port name:
|Algorithm MX25UW5124! v | a. O CAN Bus
% Prepare target for Fthernet upload...

|”"3y Upload target and algorithm to hardware...| 5.

Flash operations O Etheret

1 Upload file to device... | 6.

¥ Get flash ID...

¥ Download from device...

2. | & Test connection...

¥ Download from device to file...

% Frase memory range...

Figure 28. Configuring S32 flash tool

Select communication device and parameters:

COM4

IXXAT

deployment of the algorithm to the hardware — refer to the following figure.

4. Once the algorithm upload is complete, the log window displays a message confirming the successful

Execution

@ Program finished successfully.

LU AU AN Lal'BEL

Progress: 100

Flash algo is loaded

Device: Macronix MX25UW51245G

Capacity: 64 MiB (67108864 bytes)

Figure 29. Binary image successfully loaded

AN14070 All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023

AN14070

12/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

5. Lastly, click on Upload file to device to upload the blob image. The log window will then display the progress

of data-packets being transferred. Depending on the size of the HSE secure-boot blob image, the writing
might take between a few seconds to a few minutes. After the successful loading of the blob image is
complete, switch the mode from serial boot to QSPI boot — refer sections 4 to 6 of AN12422 for detailed
description.

7 How to load the HSE demo .elf to the SRAM

Load the generated HSE demo .elf to the SRAM using Trace32 Debugger Tool. The following steps shows how
to load in the blob:

1.

In secure boot, immediately after POR, HSE M7 core executes the BootROM. The BootROM then reads
IVT, loads its content into SRAM and after execution, passes the control over to HSE FW. So, once the
target device is fully up and running, meaning the application code that was stored in the QSPI flash is
loaded into the SRAM and, in this case, the M7 core has taken charge from HSE M7 core, the task then is
to check the status of HSE FW and test a few of the HSE services. However, to begin with the HSE status
check, the HSE demo .elf, that was generated in step 2, needs to be loaded to the SRAM; note that both
the symbols and the code must be loaded. Also remember that this app-note uses Lauterbach’s Trace32
PowerView for ARM as the debugging tool.

. Next, connect the debugger probe between PC and the target device, run the executable and configure

the Debugger Tool. Moreover, the initial configuration can be automated with the help of a .cmm file. So, to
create a .cmm file, go to File -> New Script. Then, copy the below debugger-specific configuration code to it
and close the script.

sys.CPU S32G274A-M7
core.ASSIGN 1.
sys.CONFIG.DEBUGPORTTYPE JTAG
SYStem.Option dualport on
SYStem.Option TRST OFF
SYStem.JtagClock 10MHz
sys.MemAccess DAP

ETM.OFF

3. Then, open the Trace32 Debugger tool and go to CPU -> System Settings. In the dialogue box, as shown

in the following figure, verify whether the system parameters from the .cmm file, namely CPU, dualport,
DEBUGPORTTYPE, TRST, JtagClock and MemAccess match.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023

AN14070 13/23

NXP Semiconductors

AN14070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

& B:SYStem EE
Mode MemAccess Option Option Option DisMode
(O Down DAP ~ []IMASKASM [IMACHINESPACES | (® AUTO
() NoDebug [] IMASKHLL (O) ACCESS
(O Prepare CpuBreak []INTDIS O ARM
O Go Enable v (O THUMB
CpuSpot EnReset
() StandBy Enable ™ ResBreak
Up (StandBy) WaitReset CONFIG
® Uup OFF ~ DETECT
reset
RESetOut
CPU JtagClock
S32G274A-M7 10.0MHz ~ ~
Figure 30. Configuring Trace32 debugger

4. Next, to attach to the running firmware, click on Attach; a green bar at the bottom-right corner of the GUI
indicates that the attach was successful. After this, the HSE demo .elf file must be loaded. However,
before loading the .elf file, pause the run by clicking on break, as shown in the following figure, or else the
debugger will throw a target running error.

BN TRACE32 PowerView for ARM #1
File Edit View Var Break Run CPU Misc

‘)IE.&

&Jc‘bu

Hor
hec}

Figure 31. Trace32 debugger setting

5. Then, in the command bar, enter the command data.list. It displays the paused instance of the assembly
code that was running on the M7 core - refer to the following figure.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Rev. 0 — 5 October 2023
AN14070

AN14070
Application note

14/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

= Bud.list
M Step % Over A Diverge + Return ¢ Up » Go 1l Break

addr/1ine [code Tabel mhemonic
ST:34001A9C [FO4F30FF mov.w ro,#-0x1
ST:34001AA0 [E7FB b 0x34001A9A
ST:34001AA2 BFOO nop
ST:34001AA4 |1AcC4 subs r4,ro,r3
ST:34001AA6 (3400 adds r4,#0x0

: EZFE b 0x34001AA8
ST:34001AAA (0000 movs ro,ro
ST:34001AAC |B5F8 push {r3-r7,rl4}
ST:34001AAE BFOO nop
ST:34001AB0O [RCF8 pop {r3-r7}
ST:34001AB2 |[BCO8 pop {r3}
ST:34001AB4 [469E mov rl4,r3
ST:34001AB6 4770 bx rl4
ST:34001AB8 [B5F8 push {r3-r7,rl4}
ST:34001ABA BFOO nop
ST:34001ABC [ECF8 pop {r3-r7}
ST:34001ABE [RCO08 pop {r3}

Figure 32. Stepwise debugging using Trace32 debugger
6. Next, to load the HSE demo .elf, enter the command data.load <path to the HSE demo .elf>

£1 Bud list
M Step % Over A Diverge | ¢ Retumn ¢ Up » Go 1l Break
addr/line |code Tabel mnemonic
Reset_Handler:
/* skip normal entry point as nothing
134 | cpsid i . .
B672 _start: cpsid 1
135 | mov ro, #0
ST:34080422 |[FO4F0000 mov.w r0,#0x0
136 | mov rl, #0
ST:34080426 |[FO4F0100 mov.w rl,#0x0
137 | mov r2, #0
ST:3408042A |FO4F0200 mov.w r2,#0x0

Figure 33. Stepwise debugging using Trace32 debugger two

7. Usually, the .elf, used for debugging and the blob image loaded to the flash originate from the same
application code. However, here, they both originate from two different sources; .elf from HSE demo project
and the .bin from an existing or imported M7 project. Therefore, this method is specifically devised for
testing HSE with similar conditions; note that for a lean debugging experience in the List window, click the
Mode button. The window then displays only the high level code, as shown in the following figure.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 15/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

=1 [Bud.list]
M Step % Over A Diverge | + Return e Up » Go 11 Break

addr/1ine |source
_start:
Reset_Handler:

B R R R R R R R R R L R L R R L R R R R R

/% skip normal entry point as nothing
134 | cpsid 1

135 | mov ro, #0

136 | mov rl, #0

137 | mov r2, #0

138 | mov r3, #0

139 | mov r4, #0

140 | mov r5, #0

141 | mov re, #0

142 | mov r7, #0

Figure 34. Stepwise debugging using Trace32 debugger three

8. As the function calls necessary for executing the HSE services are in the main(), it is optimal to directly jump
to that function and skip the initialization block. To do so, enter go main in the command bar. Moreover, from
this point onwards, stepwise debug the HSE demo code. To do so, use Step, Over and Up buttons to step-
into, step-over and step-up, respectively, as shown in the following figure.

= ==
M Step % Over ADiverge = + Return ¢ Up » Go 11 Break #Mode @& Find: ma
addr/line source
#if defined(APP_HSE_FW_INSTALL_NO_SEC_BOOT)
int main(void)
81.|{
82 HSE_MU_SendEvent (HSE_HOST_PERIPH_CONFIG_DONE);
5] 84 while(! CHECK_HSE_STATUS(HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK) J;
86 Init_Peripherals();
88] HSE_GetVersion_Example();
90] HSE_status();
92] HSE_Config();
94] HSE_Crypto();
96 ’ while(1);

Figure 35. Stepwise debugging using Trace32 debugger four

8 Status and version check of HSE FW

The following steps shows how to check the version and status of HSE FW:

1. The HSE_GetVersion_Example() on line 88 of HSE services contains the code that display’s the HSE’s
FW version. However, to view the FW version, first open the serial terminal such as PuTTY on the PC, then
configure the COM port and the baudrate accordingly, as shown in the following figure.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 16 /23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

=% Pu onfiguration !
E® PuTTY Configurati ? X
Category:
— Session Basic options for your PUuTTY session
- Logging _ _—
Specify the destination you want to connect to
Serial line Speed
coms || 115200
. ~Features i]
= Window Connection type:
- Appearance ()SSH (@ Serial () Other: | Telnet v

- Behaviour

Figure 36. Configuring serial console

2. Moreover, before executing the code, either set a breakpoint on line 90 and click on Go or right-click on that
line and select Go Till. Additionally, after execution, the parameters HSE FW Version and HSE FW Image is
printed on the serial terminal. It must, therefore, be verified that the printed parameters on PuTTY matches
the corresponding version number and image type — please refer the following figure.

int main(void)
81 |{
82 HSE_MU_SendEvent (HSE_HOST_PERIPH_CONFIG_DONE) ;
84 while(! CHECK_HSE_STATUS(HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK) J;
86 Init_Peripherals(); &2 COMA - PuTTY B 0O
88] HSE_Getversion_Example();
90 | HSE_Status();
92 HSE_config();
94 HSE_Crypto();
96 while(1);
}
Figure 37. Code snippet displaying HSE_status()

3. Furthermore, the version can be verified against the last four digits of the installation folder name — as
shown in the following figure.

Name

HSE_DEMOAPP_532G2XX]0_1.0.9
HSE_FW_532G2XX 0_.1.09

Figure 38. HSE version verification

4. The next check is the HSE FW’s execution status and can be done by executing HSE_Status(). Since, the
Program Counter must be on line 90, either set a breakpoint on line 92 and click on Go or right-click on that
line and select Go Till. Then, verify the printed parameters against the corresponding status, as shown in
the following figure.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 17123

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

82
84
86

887
90]

92
94
96

int main(void)
81 |{

HSE_MU_SendEvent (HSE_HOST_PERIPH_CONFIG_DONE);

while(! CHECK_HSE_STATUS (HSE_STATUS_INIT_OK | HSE_STATUS_RNG_INIT_OK));

Init_Peripherals(); &2 COM4 - PuTTY - a
HSE_GetVersion_Example();
HSE_Status();
HSE_config();
HSE_Crypto();

while(l);

Figure 39. Code snippet displaying HSE_config()

5. Although, HSE_Config() does not play an active role in realising the objectives of this app-note, the function
has some dependencies on HSE_Crpto() and therefore must be executed as well. Furthermore, the missing
parameters HSE_STATUS_PRIMARY_SYS_IMAGE and HSE_STATUS_BACKUP_SYS_IMAGE in the
above figure, indicate that as intended, the sys_img was not generated. Additionally, after this step, it is
advised to leave the PuTTY window open, as it is used to verify the successful execution of step 8.

9 Encryption and decryption

The following steps shows how to perform encryption and decryption:

1. After stepwise debugging until line 92, the next step is to verify the HSE cryptographic services on line
94 of HSE_Status. Moreover, as described in Section 4 and seen in the following figure, HSE_Crpto()
contains only one function i.e. HSE_AES Example(). The function tests both encryption and decryption of
the same plain-text; where, aesEcbPlaintext is the plain-text, aesEcbKey is the key and testOutput_encrypt
and testOutput_decrypt is where the cipher-text and deciphered-text will be stored after encryption and
decryption, respectively.

.l

void HSE_Crypto(void)

1408 |{

1409 ASSERT(CHECK_HSE_STATUS (HSE_STATUS_INSTALL_OK));
1411 HSE_Aes_Example();

1412 |}

Figure 40. HSE AES example

2. The aesEcbKey and aesEcbPlaintext can be modified in the hse_crpyto.c source file. So, for simplicity, the
key and the plain text were filled with 0x33 refer to the following figure. The user, however, may choose to
insert a different combination.

AN14070

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note

Rev. 0 — 5 October 2023
AN14070 18/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

/* AES ECB Data */
static const uint8_t aesEcbKey[] =

{
©x33,0x33,ex33,ex33,0x33,8x33,ex33,8x33,

0x33,0x33,0x33,0x33,0x33,8x33,0x33,0x33
};

static const uint8_t aesEcbPlaintext[] =

©x33,0x33,0x33,0x33,0x33,8x33,0x33,0x33,
©x33,0x33,0x33,0x33,0x33,8x33,0x33,0x33

1

Figure 41. HSE AES example two

3. In the encryption stage, aesEcbPlaintext is encrypted using aesEcbKey and the result is stored in
testOutput_encrypt, as shown in the following figure.

5 [la]=]
M Step % Over | ADiverge | ¢ Return e Up » Go 1l Break #Mode | & t Find: hse_crypto.c
addr/line |source J
~
[H = AES ECB Encrypt Request --------- */
602 memset (testoutput_encrypt, 0, BUFF_LEN);
/* send the request */
605 srvResponse = HSE_AesEncrypt(HSE_CIPHER_BLOCK_MODE_ECB, aesEcbKeyHandle,
NULL, aestEcbPlaintext, aesEcbPlaintextLength, testOutput_encrypt);
& B:VarWatch =
Ve]| [owatch | | eoview x

® testoutput_encrypt = (Ox1, 0x87, Ox13, OxF2, O0x27, OxCA, OxEB, Ox2A, 0x89, Ox0C, OxE7, Ox43, Ox7E, O0Ox94, Ox3A, 0x63
® aesEcbPlaintext = (0x33, Ox33, Ox33, 0x33, 0x33, Ox33, 0x33, 0x33, Ox33, 0x33, 0x33, 0x33, 0x33, O0x33, 0x33, Ox33)
@ aesEcbkey = (0x33, 0x33, 0x33, 0x33, 0x33, O0x33, O0x33, O0x33, 0x33, Ox33, 0x33, 0x33, 0x33, Ox33, 0x33, 0x33)

Figure 42. HSE AES example three

4. Moreover, the Watch function of the Trace32 Debugger facilitates effortless monitoring of variables from
the loaded .elf. So, to add a variable to the Watch Window, right-click on the variable and from the options
select Add to Watch Window refer to the following figure.

TVYRE _AES
¥

aesEcbKe v | v e o e

Variable
Add to Watch Window

g &

View in Window

Set Value...

Modify Value...

Go Till >

M & &

L

Breakpoint...
% Advanced Breakpoint >

Figure 43. HSE AES example four
5. The number 51, shown in the following figure, is the decimal value for 0x33.

‘ V‘ i | &% Watch | & View £
= aesEcbkey = (51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51)

Figure 44. HSE AES example five

6. Note that in order to change the variable’s format in the Watch Window, right-click on the variable and select
Format from the list of options, as shown in the following figure.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 19/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

= Change Variable Format - [l X
radix format pointer
[Decimal Compact [string

[Fixed [] wideString
[BINary TREE [Js¥mbol
[Ascii []sHow []pDUMP
[loump Open Recursive
SCALED OFF e OFF v
display other
Jindex [JHidden [] SPaces
[JType [MEthods [JE
[JLocation INherited []Spotlight
Name INheritedName STanDard

Apply Apply to Window Apply as Default

Cancel

Figure 45. Configuring output window setting
7. In the decryption stage, the testOutput _encrypt is first copied to aesEcbCiphertext. Next, the cipher-text,
using the same aesEcbKey, is decrypted and stored in testOutput_decrypt, as shown in the following figure.

M Step % Over & Diverge « Return e Up » Go 1l Break % Mode | & t Find: hse_crypto.c
addr/line |source]

[Fmmmm - AES ECB Decrypt Request ---------%/
617 memset (testoutput_decrypt, 0, BUFF_LEN);

/* send the request */
620 srvResponse = HSE_AesDecrypt(HSE_CIPHER_BLOCK_MODE_ECB, aesEchkeyHandle,
NULL, aesEcbCiphertext, aestEcbCiphertextLength, testoutput_decrypt);

& B:VarWatch F=NFEE
~ 2 || [eoWatch | | eoview ®
testoutput_decrypt = (0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, Ox

® aesEchCiphertext = (0Oxl1, 0x87, 0x13, OxF2, Ox27, OxCA, OXEB, Ox2A, 0x89, Ox0C, OXE7, 0x43, Ox7E, 0x94, Ox3A, 0x63)
@ aesEcbkey = (0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, O0x33, 0x33, 0x33, 0x33, 0x33)

Figure 46. HSE AES example six
8. The parameter HSE_Aes_Example in the following figure indicates the successful execution of the
HSE_AES_Example().

@@ COMA4 - PuTTY

Figure 47. HSE Demo execution successful

10 Verifying encryption and decryption results

The following steps shows how to verify the encrypted and decrypted results using an online AES Conversion
Tool:

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Application note Rev. 0 — 5 October 2023
AN14070 20/23

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

1. The result from the encryption and decryption still needs to be verified. Moreover, this step will reveal HSE'’s
capability in performing accurate AES based cryptographic conversions.

2. Online AES Encryption and Decryption Tool (javainuse.com) is one such online tool that is capable of
executing cryptographic checks and can, therefore, be used for comparing the results. However, NXP does
not endorse using any such tool.

3. Furthermore, for test purpose, aesEcbKey and aesEcbPlaintext were entered as key and plain-text,
respectively refer to testOutput_encrypt. Moreover, the encrypted value of the cipher-text matched the

testOutput_encrypt compare testOutput_encrypt with the below figure. Hence, it can be concluded that
encryption carried out by HSE is accurate.

018713f227caeb2a890ce7437e943a63

Figure 48. Final result verification

4. However, the verification of the decryption process was skipped, as the aesEcbCiphertext i.e. the cipher-
text, for simplicity, was copied from the testOutput_encrypt and therefore, the decryption must return the
original plain-text i.e. 0x33, 0x33,.., which it did.

5. Moreover, it is evident from figure 9.1 that the testOutput_decrypt matches aesEcbPlaintext. Therefore,
proving that the decryption was also successful.

AN14070 All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
Application note Rev. 0 — 5 October 2023
AN14070 21/23

https://www.javainuse.com/aesgenerator

NXP Semiconductors

AN14070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

11 Legal information

11.1 Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

11.2 Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

AN14070

All information provided in this document is subject to legal disclaimers.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used

by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

11.3 Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

© 2023 NXP B.V. All rights reserved.

Application note

Rev. 0 — 5 October 2023
AN14070

22/23

mailto:PSIRT@nxp.com

NXP Semiconductors AN 1 4070

How to Run HSE Demo Application on Cortex-M7 Core of $S32G2

Contents
1 Introduction ... 1
2 Installation ... 2
3 Load the HSE demo .elf to the SRAM 3
4 New application bootloader creation 6
5 Secure-boot blob image generation 8
6 Writing the blob image to the QSPI flash 1
7 How to load the HSE demo .elf to the

SRAM ... 13
8 Status and version check of HSE FW 16
9 Encryption and decryptionccccoiiiiiieeennn. 18
10 Verifying encryption and decryption

FESUILS ..o 20
1 Legal information ... 22

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2023 NXP B.V. All rights reserved.

For more information, please visit: http://www.nxp.com
Date of release: 5 October 2023
Document identifier: AN14070
Document number: AN14070

	1 Introduction
	2 Installation
	3 Load the HSE demo .elf to the SRAM
	4 New application bootloader creation
	5 Secure-boot blob image generation
	6 Writing the blob image to the QSPI flash
	7 How to load the HSE demo .elf to the SRAM
	8 Status and version check of HSE FW
	9 Encryption and decryption
	10 Verifying encryption and decryption results
	11 Legal information
	Contents

